30001 - STATISTICA / STATISTICS
Per la lingua del corso verificare le informazioni sulle classi/
For the instruction language of the course see class group/s below
Classe 9: PIERO VERONESE, Classe 10: ELENA POLI
Classe/i impartita/e in lingua italiana
Lezioni della classe erogate in presenza
Per frequentare con profitto l’insegnamento è fortemente consigliato avere una conoscenza di base degli elementi di teoria delle probabilità e delle variabili aleatorie, coperti nel corso Matematica Modulo 2 (Applicata) – cod. 30063. Tali argomenti si possono trovare nei capitoli 4, 5 e 6 del libro di testo del corso. In particolare si suggerisce di guardare con attenzione gli argomenti trattati nei paragrafi 5.3 e 5.7 del Capitolo 5.
Nell'ultimo decennio si è assistito ad una rivoluzione senza precedenti nella raccolta e nella accessibilità a dati di tutti i tipi. L’analisi esplorativa dei dati ed il loro utilizzo ai fini inferenziali sta diventando sempre più importante e cruciale in ogni campo. L’affidabilità dell’analisi dei dati e delle estrapolazioni su questa basate dipende dall’adeguatezza delle procedure di sintesi e di inferenza adottate, così come dalla corretta esposizione e comunicazione dei risultati dell’analisi. Il corso si propone di fornire i primi strumenti teorici e applicati per effettuare un’analisi statistica rigorosa di un insieme di dati. Nello specifico, il corso si focalizza sulle tecniche atte alla descrizione e alla sintesi di dati di diversa natura e allo studio delle loro relazioni, sui concetti fondamentali alla base del campionamento e dell’inferenza statistica, e sulla valutazione dei rischi connessi all’estrapolazione e all’inferenza. In particolare, lo studente impara come estrarre informazioni utili dai dati e come valutarne il grado di affidabilità.
Il corso si articola nei seguenti punti:
- Raccolta, organizzazione e descrizione dei dati tramite distribuzioni di frequenza, grafici e indici.
- Studio delle relazioni fra due caratteri.
- Inferenza statistica e variabilità campionaria.
- Teoria della stima puntuale e per intervallo.
- Verifica di ipotesi.
- Modello di regressione lineare semplice e cenni a quello multiplo.
- Comprendere la diversa natura dei dati.
- Distinguere le tecniche di analisi descrittiva da quelle inferenziali ed essere in grado di identificare quella più appropriata per il problema oggetto di studio.
- Riconoscere semplici modelli statistici.
- Sintetizzare in modo appropriato un insieme di dati.
- Stimare e verificare ipotesi su parametri non noti di una popolazione a partire da dati campionari.
- Costruire semplici modelli statistici, quali quelli di regressione, volti a studiare le relazioni fra le diverse variabili di interesse.
- Utilizzare il software R al fine di determinare le soluzioni dei precedenti problemi.
- Lezioni frontali
- Esercitazioni (esercizi, banche dati, software etc.)
- Analisi casi studio / Incidents guidati (tradizionali, multimediali)
L'attività di insegnamento-apprendimento di questo corso prevede, oltre alle tradizionali lezioni frontali, lezioni/esercitazioni in cui si utilizza il software R – e in particolare l’ambiente di sviluppo integrato (IDE) RStudio – per analizzare le diverse tecniche statistiche illustrate. In particolare, durante le esercitazioni e i tutoraggi gli studenti possono utilizzare il loro pc per condurre insieme al docente analisi dei dati volte alla risoluzione di specifici problemi, e interpretare i risultati ottenuti.
Accertamento in itinere | Prove parziali | Prova generale | |
---|---|---|---|
x | x |
La valutazione, identica sia per studenti frequentanti che non frequentanti, avviene attraverso due possibili modalità: 1) due prove parziali 2) una prova generale.
Le due prove parziali sono organizzate in modo identico, e constano ciascuna di due parti. La prima parte consiste in esercizi da risolvere manualmente e da domande di teoria, e viene valutata con un punteggio massimo di 26 punti. La seconda parte – svolta dagli studenti sul proprio laptop – consiste nell’analisi di un dataset utilizzando il software R/RStudio, e viene valutata con un punteggio massimo di 5 punti.
Ognuna delle prove parziali viene valutata con un voto massimo pari a 31/30, e si considera superata con un voto maggiore o uguale a 15. Se la prima e la seconda prova parziale sono entrambe superate, il voto finale nell’esame è dato dalla media dei voti nelle due prove. Il voto massimo è di 31/30, e l’esame si ritiene superato solo se tale voto risulta maggiore o uguale a 18. Un voto pari a 31/30 comporta l’assegnazione della lode.
La prova generale è anch’essa articolata in una parte svolta in modo tradizionale, valutata con un punteggio massimo di 26 punti, e una parte – svolta dagli studenti sul proprio laptop – consistente nell’analisi di un dataset utilizzando il software R/RStudio, che viene valutata con un punteggio massimo di 5 punti. Il voto massimo è di 31/30, e l’esame si ritiene superato solo se tale voto risulta maggiore o uguale a 18. Un voto pari a 31/30 comporta l’assegnazione della lode.
Entrambe le modalità mirano a verificare:
- La capacità di identificare la metodologia corretta per risolvere un dato problema.
- La comprensione della logica sottostante una determinata procedura.
- La capacità di calcolare specifici indicatori statistici a mano e con il software.
- La capacità di proporre un modello statistico, coerente con le ipotesi e con i dati assegnati, e di implementarlo in R/RStudio.
- La capacità di interpretare l'output del software.
- P. NEWBOLD, W.L. CARLSON, B. THORNE, Statistica, Milano, 9/Ed. Pearson (2021).
- Nota sulle Distribuzioni di frequenza disponibile sulla piattaforma Bboard del corso.
- Materiale specifico sull'uso del software R disponibile sulla piattaforma Bboard.