Info
Foto sezione
Logo Bocconi

Insegnamento a.a. 2018-2019

30001 - STATISTICA / STATISTICS

Dipartimento di Scienze delle Decisioni / Department of Decision Sciences

Per la lingua del corso verificare le informazioni sulle classi/
For the instruction language of the course see class group/s below

Vai alle classi / Go to class group/s: 9 - 10

CLEF (8 cfu - I sem. - OBBC  |  SECS-S/01)
Docente responsabile dell'insegnamento / Course Director:
PIERO VERONESE

Classi: 9 (I sem.) - 10 (I sem.)
Docenti responsabili delle classi:
Classe 9: PIERO VERONESE, Classe 10: ELENA POLI

Classe/i impartita/e in lingua italiana

Mission e Programma sintetico
MISSION

Nell’ultimo decennio si è assisto ad una rivoluzione senza precedenti nella raccolta e nella accessibilità a dati di tutti i tipi: negli ultimi due anni, ad esempio, c'è stato un incremento del 90% dei dati prodotti nel mondo. La possibilità di avere così tanti dati non significa però un aumento diretto della conoscenza dei vari fenomeni, anzi è possibile il contrario. Al di là dei molti problemi tecnici dovuti all'elaborazione di dataset di enormi dimensioni, una analisi accurata di tali dati non può non tener conto ad esempio della loro differente natura, della loro complessità, delle loro inter-relazioni ecc. Il corso si propone quindi di fornire i primi strumenti teorici e applicati per effettuare un’analisi statistica rigorosa di un insieme di dati. In particolare lo studente impara non solo a ottenere informazioni utili al problema in esame, ma anche a valutare il loro grado di affidabilità.

PROGRAMMA SINTETICO

Il corso si articola nei seguenti punti:

  • Raccolta, organizzazione e descrizione dei dati tramite distribuzioni di frequenza, grafici e indici.
  • Studio delle relazioni fra due caratteri.
  • Inferenza statistica e variabilità campionaria.
  • Teoria della stima puntuale e per intervallo.
  • Verifica di ipotesi.
  • Modello di regressione lineare semplice e cenni a quello multiplo.

Risultati di Apprendimento Attesi (RAA)
CONOSCENZA E COMPRENSIONE
Al termine dell'insegnamento, lo studente sarà in grado di...
  • Comprendere la diversa natura dei dati.
  • Distinguere le tecniche di analisi descrittiva da quelle inferenziali ed essere in grado di identificare quella più appropriata per il problema oggetto di studio.
  • Riconoscere semplici modelli statistici.
CAPACITA' DI APPLICARE CONOSCENZA E COMPRENSIONE
Al termine dell'insegnamento, lo studente sarà in grado di...
  • Sintetizzare in modo appropriato un insieme di dati.
  • Stimare e verificare ipotesi su parametri non noti di una popolazione a partire da dati campionari.
  • Costruire semplici modelli statistici, quali quelli di regressione, volti a studiare le relazioni fra le diverse variabili di interesse.
  • Utilizzare il software R al fine di determinare le soluzioni dei precedenti problemi.

Modalità didattiche
  • Lezioni frontali
  • Esercitazioni (esercizi, banche dati, software etc.)
  • Analisi casi studio / Incidents guidati (tradizionali, multimediali)
DETTAGLI

L'attività di insegnamento-apprendimento di questo corso, oltre alle tradizionali lezioni frontali, prevede lezioni/esercitazioni in cui si utilizza il software R per risolvere le diverse problematiche statistiche precedentemente illustrate. In particolare durante le esercitazioni e i tutoraggi gli studenti possono utilizzare il loro pc per risolvere assieme al docente il problema proposto e interpretare i risultati. Un data-set reale è utilizzato durante tutto il corso cosicché alla fine si possa avere un esempio completo (rispetto agli strumenti illustrati) di una concreta analisi statistica.


Metodi di valutazione dell'apprendimento
  Accertamento in itinere Prove parziali Prova generale
  • Prova individuale scritta (tradizionale/online)
  •   x x
    STUDENTI FREQUENTANTI E NON FREQUENTANTI

    La valutazione, identica sia per studenti frequentanti che non frequentanti, avviene attraverso due possibili modalità: 1) tre prove parziali 2) uno scritto generale.

    1. Delle tre prove parziali due sono svolte in modo tradizionale (carta e penna), mentre una richiede che lo studente usi il suo pc per svolgere una piccola analisi di un data-set, tramite il software R, che gli consente di rispondere ad alcune domande. Quest’ultima prova vale al massimo 4/30 di punto che sono aggiunti alla media delle altre due prove parziali che non possono superare i 27/30 di punto.
    2. Una prova generale svolta in modo tradizionale (punteggio massimo 31/30). Il testo dell’esame contiene domande esplicite sul codice di R, sul suo funzionamento e sull’interpretazione dei suoi risultati. Tali domande hanno globalmente un peso pari a 4/30 di punto. Un punteggio totale di 31/30 equivale a 30/30 e lode.

    Entrambe le modalità mirano a verificare tramite opportune domande:

    • La capacità di identificare la metodologia corretta per risolvere un dato problema.
    • La comprensione della logica sottostante una determinata procedura.
    • La capacità di calcolare specifici indicatori statistici a mano e con il software.
    • La capacità di proporre un modello statistico, coerente con le ipotesi e con i dati assegnati, e di implementarlo con R.
    • La capacità di interpretare l'output del software.

    Materiali didattici
    STUDENTI FREQUENTANTI E NON FREQUENTANTI
    • P. NEWBOL, W.L. CARLOS, B. THORNE, Statistica, Milano, 2010Pearson/Prentice Hall, 2010, 2° edizione.
    • Nota sulle Distribuzioni di frequenza disponibile sulla piattaforma Bboard del corso.
    • Materiale specifico sull'uso del software R è caricato sulla piattaforma Bboard all'inizio del corso. 
    Modificato il 11/09/2018 20:25