Info
Foto sezione
Logo Bocconi

Insegnamento a.a. 2018-2019

30001 - STATISTICA / STATISTICS

Dipartimento di Scienze delle Decisioni / Department of Decision Sciences

Per la lingua del corso verificare le informazioni sulle classi/
For the instruction language of the course see class group/s below

Vai alle classi / Go to class group/s: 11 - 12

CLEACC (9 cfu - I sem. - OB  |  SECS-S/01)
Docente responsabile dell'insegnamento / Course Director:
EUGENIO MELILLI

Classes: 12 (I sem.)
Instructors:
Class 12: REBECCA GRAZIANI

Class group/s taught in English

Mission & Content Summary
MISSION

The course has two main purposes. First, the course aims at introducing the statistical tools assumed as indispensable for an undergraduate student in economics. Second, the course intends to enhance modelling capabilities needed for a better understanding of social and economic phenomena and for dealing with decisions under uncertainty. The different topics are introduced starting from real situations and phenomena in order to stress the applied relevance of the concepts and methodological tools. Students are introduced to the use of the software R for the presentation and the analysis of economic and business data.

CONTENT SUMMARY

Elements of descriptive statistics:

  • Statistical variables, population and sample.  Data representation and analysis through tables and charts. Frequency distributions.
  • Measures of position, dispersion, concentration and association.

Elements of probability theory:

  • Basic probability rules. Law of total probability. Bayes theorem.
  • Discrete and continuous random variables. Probability distributions. Expected value and variance. Binomial  and Gaussian distributions.
  • Independent random variables, central limit theorem.

Elements of statistical inference:

  • Point and interval estimation of means and proportions. Interval length and confidence level.
  • Hypothesis testing on means, proportions and difference of means. Level of a test. P-value. Test of independence.

Regression models:

  • Simple linear regression. Inference on the parameters of the model. Testing the significance of the independent variable. Variability decomposition and R-square. Prediction.
  • Multiple linear regression. Inference on the parameters of the model. Testing the significance of each independent variable, of a group of variables and of the overall model. Variability decomposition and R-square. Prediction.

Intended Learning Outcomes (ILO)
KNOWLEDGE AND UNDERSTANDING
At the end of the course student will be able to...
  • Understand and distinguish the different types of data and the different techniques of analysis, both in a descriptive setting (through indicators and plots) and in an inferential one (using appropriate statistical models).
APPLYING KNOWLEDGE AND UNDERSTANDING
At the end of the course student will be able to...
  • Appropriately summarize datasets, estimate unknown population parameters and test hypothesis on them starting from sample data, construct simple statistical models (such as regression models) designed to study the relationships among variables. Give valid answers to research questions and help taking decisions using sample data.
     

Teaching methods
  • Face-to-face lectures
  • Exercises (exercises, database, software etc.)
DETAILS

Exercises  devoted to the analysis of  data are proposed throughout the whole course, with particular enphasis on data coming from fields of primary  interest for this course; to this aim the software R is used on a regular basis. Students are invited  to take an active part in the analysis using their own notebook.


Assessment methods
  Continuous assessment Partial exams General exam
  • Written individual exam (traditional/online)
  •   x x
    ATTENDING AND NOT ATTENDING STUDENTS
    • Two partial written exams. The students are required to answer to questions  aimed at verifying the ability to understand and distinguish different types of data and the related techniques of analysis and to apply the methodologies introduced to real phenomena. Some of the proposed questions need for the answer the use of the software R; for this reason the exams take place in info room. Proper interpretation and comment of the results of the analysis are required. Each partial exam has maximum grade 31. The final grade is obtained as arithmetic average of the grades of the two partial exams.
    • A written general exam, having the same characteristics of the two partial exams described above but covering the whole program of the course, with maximum grade 31.

    Teaching materials
    ATTENDING AND NOT ATTENDING STUDENTS
    • P. NEWBOLD, W.L. CARLSON, B.M. THORNE, Statistics for Business and Economics, Pearson, 2013, 8th edition.
    • Teaching notes available on Bboard.
    • Exercises, datasets and further material available on Bboard.
    Last change 10/07/2019 11:46

    Classi: 11 (I sem.)
    Docenti responsabili delle classi:
    Classe 11: EUGENIO MELILLI

    Classe/i impartita/e in lingua italiana

    Mission e Programma sintetico
    MISSION

    Il corso ha essenzialmente due obiettivi: da una parte si propone di fornire allo studente quegli strumenti statistici ritenuti indispensabili nella preparazione di un laureato in materie economico-aziendali e utili ai fini dello svolgimento della tesi di laurea. Dall'altra parte, il corso mira a favorire nello studente la formazione della capacità di modellizzazione della realtà, necessaria per l'analisi quantitativa di fenomeni economici e sociali e per la conseguente predisposizione di strumenti idonei per l'assunzione di decisioni in condizioni di incertezza. La presentazione degli argomenti è motivata da situazioni e fenomeni reali, in modo da porre in evidenza l'applicabilità dei concetti e delle metodologie introdotte, con particolare attenzione ai settori di primario interesse nel corso di laurea. Nel corso si fa uso del software statistico R per la presentazione e l'analisi di dati e fenomeni di natura economica ed aziendale.

    PROGRAMMA SINTETICO

    Elementi di statistica descrittiva:

    • Unità e carattere statistico. Popolazione e campione. Tipologie di dati.
    • Raccolta, analisi e rappresentazione di dati attraverso tabelle e grafici. 
    • Misure di posizione, di variabilità, di concentrazione, di associazione.

    Elementi di calcolo delle probabilità:

    • Regole di base della probabilità. Teorema delle probabilità totali. Teorema di Bayes.
    • Variabili aleatorie discrete e continue. Distribuzioni di probabilità. Valore atteso e varianza. Distribuzione binomiale e distribuzione gaussiana.
    • Variabili aleatorie indipendenti e teorema centrale del limite.

    Elementi di inferenza statistica:

    • Stima puntuale e mediante intervalli di confidenza di medie e proporzioni. Coefficiente di confidenza e lunghezza di un intervallo.
    • Verifica di ipotesi sulla media, sulla proporzione e sulla differenza di medie. Livello di un test. P-value. Test di indipendenza.

    Modelli di regressione:

    • Modello di regressione lineare semplice. Problemi inferenziali sui parametri del modello di regressione. Test per la significatività della variabile esplicativa. Scomposizione della variabilità e coefficiente di determinazione. Previsione.
    • Modello di regressione lineare multipla. Problemi inferenziali sui parametri del modello di regressione. Test per la significatività delle singole variabili esplicative, di gruppi di variabili e del modello nel suo complesso. Uso di variabili esplicative qualitative. Scomposizione della variabilità e coefficiente di determinazione. Previsione.

    Risultati di Apprendimento Attesi (RAA)
    CONOSCENZA E COMPRENSIONE
    Al termine dell'insegnamento, lo studente sarà in grado di...
    • Comprendere e distinguere le diverse tipologie di dati e le relative tecniche di analisi, sia in ambito descrittivo (attraverso indicatori e grafici), sia in ambito inferenziale (mediante l'uso di opportuni modelli statistici).
    CAPACITA' DI APPLICARE CONOSCENZA E COMPRENSIONE
    Al termine dell'insegnamento, lo studente sarà in grado di...
    • Sintetizzare e descrivere in modo appropriato un insieme di dati; costruire modelli probabilistico-statistici per rappresentare ed analizzare fenomeni reali; usando tali modelli, inferire, sulla base di dati campionari, su  parametri incogniti della  popolazione di interesse; rispondere, sempre partendo da informazioni campionarie,  a domande di ricerca; usare informazioni provenienti da indagini campionarie per orientare le decisioni in ambito economico-aziendale.

    Modalità didattiche
    • Lezioni frontali
    • Esercitazioni (esercizi, banche dati, software etc.)
    DETTAGLI

    Durante l'intero corso vengono svolti esercizi in cui sono proposte analisi di dati effettuate con il software R. Gli studenti possono partecipare in modo attivo a tali analisi, usando in aula il proprio notebook.


    Metodi di valutazione dell'apprendimento
      Accertamento in itinere Prove parziali Prova generale
  • Prova individuale scritta (tradizionale/online)
  •   x x
    STUDENTI FREQUENTANTI E NON FREQUENTANTI
    • Due prove parziali  in forma scritta. Allo studente è richiesto di rispondere a domande  volte a verificare l’acquisizione della capacità di comprendere e distinguere le diverse tipologie di dati e le relative tecniche di analisi e di applicare le metodologie apprese a situazioni reali. Parte delle domande proposte richiedono, per la risposta, l’uso del software R; per questo motivo, gli esami si svolgono in aula info. Ciascuna delle due prove parziali prevede un voto massimo pari a 31. Il voto finale è dato dalla media aritmetica delle votazioni riportate nelle prove parziali. 
    • Una prova generale, in forma scritta, che segue le stesse modalità delle prove parziali ma verte su tutto il programma del corso. Essa si svolge in aula info e richiede, per le risposte ad alcune domande, l’uso del software R. La prova prevede un voto massimo pari a 31.

    Materiali didattici
    STUDENTI FREQUENTANTI E NON FREQUENTANTI
    • P. NEWBOLD, W.L. CARLSON, B. THORNE, Statistica, Milano, Pearson/Prentice Hall, 2010, 2° edizione.
    • Note didattiche, esercizi e altro materiale disponibile su Bboard.
    Modificato il 10/07/2019 11:46