5015 - MATEMATICA GENERALE / MATHEMATICS
CLEA - CLAPI - CLEFIN - CLELI - DES - CLEMIT
Dipartimento di Scienze delle Decisioni / Department of Decision Sciences
Per la lingua del corso verificare le informazioni sulle classi/
For the instruction language of the course see class group/s below
MARGHERITA CIGOLA
Classe 1: MATTEO ROCCA, Classe 2: MARGHERITA MADONNA, Classe 3: GIANPAOLO MONTI, Classe 4: MAURO D'AMICO, Classe 5: MARGHERITA CIGOLA, Classe 6: FABRIZIO IOZZI, Classe 7: EMANUELA VALAPERTA
Classe/i impartita/e in lingua italiana
Obiettivi formativi del corso
Il corso si propone di fornire le nozioni che sono basilari per affrontare altri insegnamenti quantitativi (Statistica, Matematica Finanziaria) e che sono utilizzate in molti insegnamenti non strettamente quantitativi (Economia, Marketing). Inoltre ambisce a introdurre direttamente i primi modelli di tipo applicativo, nonché i primi concetti di calcolo finanziario.
Programma sintetico del corso
- Funzioni: funzioni reali di variabile reale e loro rappresentazione grafica. Funzioni limitate: massimo e minimo globale. Monotonia, convessita' e concavita'. Intorni: massimi e minimi locali.
- Successioni numeriche. Limiti: convergenza e divergenza di una successione. Il numero e di Nepero.
- Limiti per una funzione. Funzioni continue e loro principali proprieta'.
- Calcolo differenziale per funzioni di una variabile reale. Derivata e differenziale. Calcolo delle derivate. Applicazioni del calcolo differenziale: ricerca di massimi e minimi, studio del grafico di una funzione.
- Serie numeriche. Carattere di una serie. Serie geometrica. Criteri di convergenza.
- Calcolo integrale. Primitiva di una funzione e metodi di integrazione. Integrale definito. Integrali su intervalli illimitati.
- Vettori e matrici: combinazioni lineari di vettori, dipendenza e indipendenza lineare. Matrici quadrate: determinante e matrice inversa. Rango di una matrice.
- Funzioni lineari e sistemi di equazioni lineari. Soluzioni di un sistema lineare: teorema di Rouché-Capelli. Sistemi quadrati e teorema di Cramer.
- Applicazioni economiche: il modello di Leontief, determinazione dell'ottimo prezzo di vendita nel caso di monopolio, portafogli titoli.
- Calcolo finanziario: fattori di sconto e di montante. Leggi finanziarie, intensita' istantanea d'interesse. Valutazione di flussi di cassa: valore attuale netto, DCF e tasso interno.
Descrizione dettagliata delle modalità d'esame
L'esame consiste in una prova scritta e in una prova orale: entrambe obbligatorie. La prova scritta puo' essere sostenuta attraverso quattro prove intermedie previste durante il corso ovvero tramite una prova scritta prima dell'orale.
Informazioni piu' dettagliate sono disponibili nella bacheca dell'Istituto di Metodi quantitativi sul sito Bocconi.
Testi d'esame
- L. PECCATI, S. SALSA, A. SQUELLATI, Matematica per l'Economia e l'Azienda, EGEA, 2004, 3a ed.
Class group/s taught in English
Course Objectives
This course has the purpose to provide the mathematical tools required to face other quantitative courses (Statistics, Financial Mathematics) and is helpful for some courses which are not strictly quantitative (Economics, Marketing). Moreover it aims at introducing some models for Business and Economics as well as the basic notions of financial calculus.
Course Content Summary
- Functions: real functions of one real variable, graphs. Bounded functions: global maxima and minima. Monotonicity, convexity and concavity. Neighborhoods: local maxima and minima.
- Numerical sequences. Limits: convergence and divergence of a sequence. The Napier number e.
- Limits for a function. Continuous functions and their main properties.
- Differential calculus for functions of one real variable. Applications of differential calculus: finding maxima and minima, plotting the graph of a function.
- Numerical series. Behaviour of a series. Geometric series. Convergence criteria.
- Integral calculus. Antiderivative of a function and integration methods. Definite integral. Functions defined by integrals. Integral over an unbounded interval.
- Vector and matrices: linear combination of vectors, linear dependence and independence. Square matrices: determinant and inverse matrix. Rank of a matrix.
- Linear function and systems of linear equations. Solutions of a linear system: the Rouché-Capelli theorem. Square linear systems and the Cramer theorem.
- Economic applications: Input-Output Leontief model, optimal price policy, bond portfolios.
- Financial calculus: discount and accumulation factors. Financial laws, force of interest. Evaluation of a cash-flow: Net Present Value, Discounted Cash Flow and Internal Rate of Return.
Detailed Description of Assessment Methods
The exam consists of a written exam and an oral exam: both of them are compulsory. The written exam can be taken by four partial exams scheduled during the course or via a single written exam. Further details are available on the IMQ electronic bulletin board on the Bocconi site.
Textbooks
To be defined.
ANNA MARIA SQUELLATI
Classe/i impartita/e in lingua italiana
Obiettivi formativi del corso
ll corso si propone di fornire le prime nozioni e i primi strumenti indispensabili per la costruzione, l'analisi e la comprensione di semplici modelli matematici.
Programma sintetico del corso
- Insiemi numerici.
- Algebra lineare: vettori, matrici e sistemi lineari.
- Successioni. Funzioni di una variabile reale. Limiti e continuita'.
- Calcolo differenziale e applicazioni. Calcolo integrale.
- Calcolo differenziale per funzioni di piu' variabili. Ottimizzazione.
Descrizione dettagliata delle modalità d'esame
L'esame e' costituito da una prova scritta della durata di circa un'ora, seguita da una prova orale obbligatoria. La prova scritta puo' essere sostenuta attraverso prove intermedie.
Informazioni piu' dettagliate sono disponibili nella bacheca dell'Istituto di Metodi Quantitativi sul sito Bocconi.
Testi d'esame
- L. PECCATI, S. SALSA, A. SQUELLATI, Matematica per l'Economia e l'Azienda, Milano, EGEA, 2004.
GABRIELE GURIOLI
Classe/i impartita/e in lingua italiana
Obiettivi formativi del corso
ll corso, dopo una parte introduttiva dedicata ad alcune nozioni di base, presenta gli strumenti del calcolo (differenziale e integrale) e dell'algebra lineare. La loro padronanza, che il corso si propone di fornire, e' una delle condizioni essenziali per poter affrontare lo studio dei modelli economico-finanziari oggetto di corsi successivi.
Programma sintetico del corso
-
Elementi di logica. Insiemi numerici.
-
Successioni numeriche: limite di una successione, carattere di una successione, il numero e; operazioni con i limiti, forme di indecisione, calcolo dei limiti.
-
Serie numeriche, carattere di una serie, serie a termini positivi: criterio del confronto, criterio del rapporto, serie a termini di segno qualunque e alternato.
-
Funzioni, rappresentazione grafica, composizione di funzioni, funzione inversa, massimi e minimi globali e locali, monotonia, cenni alla convessita'.
-
Limiti per funzioni, calcolo dei limiti, continuita', proprieta' delle funzioni continue.
-
Derivata e differenziale, calcolo delle derivate, formula di Taylor: derivate e differenziali, successivi applicazioni del calcolo differenziale: ricerca di massimi e minimi liberi, grafico di una funzione.
-
Calcolo integrale, primitiva di una funzione e metodi di integrazione, integrale definito, integrali generalizzati.
-
Vettori e spazi vettoriali, dipendenza e indipendenza lineare; matrici, operazioni tra matrici, matrici quadrate: determinante e matrice inversa, rango di una matrice.
-
Funzioni lineari: nucleo e immagine, sistemi di equazioni lineari e teorema di Rouche'-Capelli, sistemi quadrati e teorema di Cramer.
-
Funzioni scalari di vettore: continuita' e derivabilita', derivate parziali e condizione necessaria di estremo locale, cenni sulle relazioni tra derivabilita' continuita' e differenziabilita', teorema di Dini per funzioni di due variabili.
Descrizione dettagliata delle modalità d'esame
L'esame consiste in una prova scritta e in una prova orale (da sostenere nel medesimo appello).
Sono previste due prove intermedie che sostituiscono la prova scritta e che consentono di sostenere una prova orale qualsiasi nell'arco dell'anno solare.
Testi d'esame
-
L. PECCATI, S. SALSA, A. SQUELLATI, Matematica per l'Economia e l'Azienda, Milano, EGEA, 2004.
FABIO ANGELO MACCHERONI
Classe/i impartita/e in lingua italiana
Obiettivi formativi del corso
Il corso si propone di fornire agli studenti gli strumenti analitici di base per affrontare lo studio successivo di altri insegnamenti che ne fanno largo uso. Esso presenta inoltre direttamente i primi modelli applicativi e i fondamenti di calcolo finanziario.
Programma sintetico del corso
-
Successioni numeriche: successioni convergenti, divergenti, irregolari. Il numero e. Operazioni con i limiti. Forme di indecisione. Calcolo dei limiti.
-
Serie numeriche. Carattere di una serie. Criteri di convergenza.
-
Funzioni: dominio, codominio, insieme immagine. Funzioni reali di variabile reale e loro rappresentazione grafica. Massimi e minimi. Funzioni monotone. Cenni sulle funzioni convesse.
-
Limiti per funzioni reali di variabile reale. Calcolo dei limiti. Asintoti verticali e orizzontali. Teoremi sui limiti. Continuita'. Proprieta' delle funzioni continue.
-
Derivate. Calcolo delle derivate. Elasticita'. Derivate successive. Formula di Taylor. Applicazioni del calcolo differenziale: ricerca di massimi e minimi liberi.
-
Lo studio del grafico di una funzione.
-
Calcolo integrale. Primitiva di una funzione e metodi di integrazione. Integrale definito.
-
Vettori e operazioni tra vettori. Dipendenza e indipendenza lineare. Sostegno e base di uno spazio vettoriale. Matrici, operazioni tra matrici. Matrici quadrate: determinante e matrice inversa. Rango di una matrice.
-
Funzioni lineari. Sistemi lineari e teorema di Rouche'-Capelli. Struttura dell'insieme delle soluzioni. Sistemi quadrati e teorema di Cramer.
-
Elementi di calcolo finanziario: attualizzazione e capitalizzazione i principali regimi finanziari rimborso graduale di un prestito valutazione di progetti finanziari.
Descrizione dettagliata delle modalità d'esame
L'esame consiste in una prova scritta e una prova orale facoltativa. La prova scritta puo' essere sostenuta attraverso due prove intermedie.
Testi d'esame
- L. PECCATI, S. SALSA, A. SQUELLATI, Matematica per l'Economia e l'Azienda, Milano, EGEA, 2004.
ANGELO GUERRAGGIO
Classe/i impartita/e in lingua italiana
Obiettivi formativi del corso
Il corso si propone di fornire gli strumenti analitici di base per poter costruire e utilizzare modelli semplificati della realta' e per poter affrontare lo studio successivo di altri insegnamenti che ne fanno largo uso.
Programma sintetico del corso
Prima parte
-
Funzioni: dominio, codominio, insieme immagine. Funzioni reali di variabile reale e loro rappresentazione grafica. Funzioni limitate: massimo e minimo assoluto. Funzioni monotone. Cenni sulle funzioni convesse. Intorni e nozione di massimo e minimo locale.
-
Limiti per funzioni reali di variabile reale. Calcolo dei limiti. Asintoti verticali e orizzontali. Teoremi sui limiti. Continuita'. Proprieta' delle funzioni continue.
-
Calcolo differenziale per funzioni di una variabile. Derivata e differenziale. Calcolo delle derivate. Elasticita' e semielasticita' puntuali. Formula di Taylor: derivate e differenziali successivi. Applicazioni del calcolo differenziale: ricerca di massimi e minimi. Lo studio del grafico di una funzione.
-
Serie numeriche. Carattere di una serie. Serie geometrica. Serie a termini positivi: criterio del rapporto, criterio del rapporto asintotico.
Seconda parte
-
Algebra lineare. Operazioni tra vettori e matrici. Dipendenza e indipendenza lineare. Funzioni lineari da Rn a Rm. Determinante e rango di una matrice. Sistemi lineari.
-
Funzioni di due variabili. Curve di livello. Derivate parziali e differenziale. Ottimizzazione libera: condizioni del primo e del secondo ordine. Funzioni implicite.
-
Calcolo integrale. Definizione di integrale. Calcolo differenziale e calcolo integrale: teorema fondamentale. Metodi di calcolo delle primitive. Integrali generalizzati. Serie e integrali. Funzioni definite da integrali.
Descrizione dettagliata delle modalità d'esame
L'esame consiste in una prova scritta e in una prova orale (da sostenere nel medesimo appello).
Sono previste quattro prove scritte intermedie che, se superate con esito positivo, sostituiscono l'esame.
Testi d'esame
- A. GUERRAGGIO, Matematica, Milano, Bruno Mondadori, 2004.
- M. ROCCA, G. CRESPI, Temi svolti di Matematica Generale, Milano, Datanova, 2001.
MICHELE IMPEDOVO
Classe/i impartita/e in lingua italiana
Obiettivi formativi del corso
Il corso si propone di fornire gli strumenti matematici di base (di calcolo differenziale, di algebra lineare, di matematica finanziaria) per costruire e analizzare i piu' importanti modelli di tipo quantitativo, priviliegiando l'aspetto applicativo e l'attivita' di problem solving.
Vengono utilizzati strumenti di calcolo simbolico e di calcolo numerico e in particolare un software di matematica (Mathcad®); sono previste lezioni, esercitazioni e prove di valutazione in aula di informatica. Vengono in particolare forniti strumenti e algoritmi per la simulazione e per l'approssimazione numerica dei modelli analizzati.
Viene utilizzata in modo sistematico la piattaforma di e-Learning.
Programma sintetico del corso
- Successioni e serie
- Funzioni reali
- Calcolo differenziale e integrale
- Ottimizzazione libera e vincolata
- Vettori e matrici
- Sistemi dinamici continui e discreti
- Matematica Finanziaria
Esempi di applicazioni e modelli
- La capitalizzazione composta: TIR e VAN di un'operazione finanziaria
- Modelli lineari: il metodo dei minimi quadrati
- Modelli non lineari: regressione potenza e regressione esponenziale
- Interpolazione polinomiale. Le cubic spline
- Piani di ammortamento
- Algoritmo di Newton per la soluzione di equazioni
- Polinomi di Taylor per l'approssimazione di funzioni
- Il modello input-output di Leontief
- Le catene di Markov
- Un modello demografico: le matrici di Leslie
- Sistemi dinamici: la crescita logistica, il modello preda-predatore
- Sistemi dinamici e frattali: l'insieme di Mandelbrot
- Algoritmo di Eulero per la soluzione di un'equazione differenziale
Descrizione dettagliata delle modalità d'esame
L'esame consiste in una prova scritta e in una prova orale. Durante il corso si svolgono quattro prove intermedie in aula di informatica; se il punteggio totale conseguito nelle prove intermedie raggiunge una soglia minima e' possibile sostenere direttamente la prova orale.
Testi d'esame
- M. IMPEDOVO, Matematica generale con il calcolatore, Springer, 2005.
- M. IMPEDOVO, F. IOZZI, Matematica e modelli matematici, EGEA, 2003.