Insegnamento a.a. 2024-2025

20659 - DATA ANALYSIS FOR MANAGERIAL DECISION MAKING

Department of Management and Technology

Course taught in English

Class timetable
Exam timetable
Go to class group/s: 31
CLMG (6 credits - I sem. - OP  |  SECS-P/06) - M (6 credits - I sem. - OP  |  SECS-P/06) - IM (6 credits - I sem. - OP  |  SECS-P/06) - MM (6 credits - I sem. - OP  |  SECS-P/06) - AFC (6 credits - I sem. - OP  |  SECS-P/06) - CLELI (6 credits - I sem. - OP  |  SECS-P/06) - ACME (6 credits - I sem. - OP  |  SECS-P/06) - DES-ESS (6 credits - I sem. - OP  |  SECS-P/06) - EMIT (6 credits - I sem. - OP  |  SECS-P/06) - GIO (6 credits - I sem. - OP  |  SECS-P/06) - PPA (6 credits - I sem. - OP  |  SECS-P/06) - FIN (6 credits - I sem. - OP  |  SECS-P/06) - AI (6 credits - I sem. - OP  |  SECS-P/06)
Course Director:
GIADA DI STEFANO

Classes: 31 (I sem.)
Instructors:
Class 31: GIADA DI STEFANO


Mission & Content Summary

MISSION

Nowadays the use of data across firms is pervasive: A recent survey by PwC of more than 2,100 executives reveals that most of them consider their organization as either highly data-driven (39%) or somewhat data-driven (53%). Interestingly, these companies claim to use analytics mostly for descriptive and diagnostic purposes, rather than for predictive and prescriptive purposes. Being able to predict and prescribe may require managers to get their hands dirty, and collect themselves the data they need to answer the questions they have in mind. To put remedy to the passive use of data analytics inside firms, it is necessary to learn how to craft a research question, design a study, collect the data, and analyze them. This is exactly the spirit of our course.

CONTENT SUMMARY

The main goal of our course is to provide students with a comprehensive understanding of research methods based on primary data, i.e. data collected first-hand for a specific purpose. We would like to focus our attention on both qualitative (observation, interviews) and quantitative (surveys, experiments) data. In particular, we discuss:

Introduction:

  • Statement of a problem / Framing a hypothesis.
  • Research Design / Primary vs. Secondary data / Causality / Issues of validity and reliability.

Observations, interviews:

  • Why should managers go qualitative? Introduction and overview of the method.

  • Research design – Role of the researcher, ethical considerations, sample selection, etc..

  • Data analysis – What we can learn from qualitative data, issues of generalizability, etc..

  • Introduction to NVivo.

Surveys:

  • Why should managers run surveys? Introduction and overview of the method.

  • Research design – Measurement, scales, etc..

  • Data analysis – Sampling, non-response, single method, etc..

  • Introduction to Qualtrics.

Experiments:

  • Why should managers run experiments? Introduction and overview of the method.

  • Research design – Threats to internal validity, manipulation checks, noncompliance issues, experimental mortality, interference between experimental units.

  • Designing an experiment.

  • Analyzing experimental data.

Conclusion:

  • Group project presentations.


Intended Learning Outcomes (ILO)

KNOWLEDGE AND UNDERSTANDING

At the end of the course student will be able to...
  • Know what primary data are.
  • Know the main terminology and concepts associated to the research methods used to deal with such data.
  • Know the strengths and limitations of each method.
  • Know the statistical techniques and software used to analyze different types of primary data.

APPLYING KNOWLEDGE AND UNDERSTANDING

At the end of the course student will be able to...
  • Formulate a research question.
  • Choose the most appropriate method to analyze the research question at hand.
  • Design an efficient protocol that avoids the most common pitfalls.
  • Analyze the collected data with the most appropriate techniques.
  • Present their results in an effective way in both written and oral form.

Teaching methods

  • Guest speaker's talks (in class or in distance)
  • Practical Exercises
  • Collaborative Works / Assignments
  • Interaction/Gamification

DETAILS

The course leverages a blend of methods aimed at complementing each other and optimizing the learning experience:

  • Lectures are used to discuss the theoretical and technical aspects associated to the collection and analysis of different types of primary data. During such lectures, students also have the chance to work with case studies, interactive class activities, as well as short individual and group exercises that help them understand the peculiarities associated with each type of data.
  • Practice sessions provide students with a hands-on experience of the research methods we discuss in class. Those practice sessions focus on issues related to both research design and data analysis.
  • Guest lectures expose students to the practices currently used in some firms.
  • Finally, students also put their knowledge in practice by participating to a group project. This allows them to experience first-hand the challenges associated with designing a qualitative data collection, a survey, or an experiment.

Assessment methods

  Continuous assessment Partial exams General exam
  • Written individual exam (traditional/online)
    x
  • Collaborative Works / Assignment (report, exercise, presentation, project work etc.)
x    
  • Active class participation (virtual, attendance)
x    

ATTENDING STUDENTS

Attending students are evaluated based on the following criteria:

  1. Group project (50% of final grade) aimed to test the students' ability to formulate a research question, choose the most appropriate research method to analyze the research question at hand, and design an efficient protocol to study it. Moreover, the group project allows to test students' ability to present their results in an effective way in both written and oral form.
  2. Written exam (50% of final grade). The exam includes both open- and close-ended questions, aimed to test students' knowledge of the main terminology and concepts associated to the research methods used to deal with primary data, the strengths and limitations of each method, as well as the statistical techniques and softwares used to analyze different types of primary data.
  3. Class Participation (up to 2 bonus points). Class discussion is a central part of the learning experience. Students can gain up to two bonus points for consistent and high-quality participation.


NOT ATTENDING STUDENTS

Non-attending students are evaluated based on a written exam that includes both open- and close-ended questions.

  • The exam tests students' knowledge of the main terminology and concepts associated to the research methods used to deal with primary data, the strengths and limitations of each method, as well as the statistical techniques and softwares used to analyze different types of primary data.
  • Moreover, through the open-ended questions, we intend to test the students' ability to formulate a research question, choose the most appropriate research method to analyze the research question at hand, and design an efficient protocol to study it. 

Teaching materials


ATTENDING AND NOT ATTENDING STUDENTS

Slides and articles distributed in class and posted on Bboard.

Last change 27/05/2024 09:49